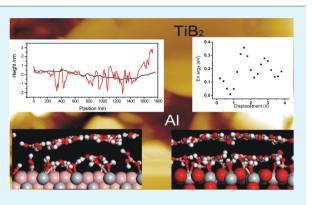
ACS APPLIED MATERIALS & INTERFACES

Micromechanism in Self-Lubrication of TiB₂/Al Composite

Xin Zhou,^{†,§} Longtao Jiang,[‡] Shengbin Lei,^{*,§} Wei Quan Tian,^{*,†} and Gaohui Wu^{*,‡}


[†]State Key Laboratory of Urban Water Resource and Environment, Institute of Theoretical and Simulational Chemistry, Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology, Harbin, 150080, P. R. China

[‡]Institute of Metal Matrix Composite Science and Engineering, Harbin Institute of Technology, Harbin, 150080, P. R. China

[§]State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, 150080, P. R. China

Supporting Information

ABSTRACT: The authors discovered the self-lubrication behavior of TiB₂/Al composite and pointed out that the materials responsible for the self-lubrication behavior comes from the oxidation of TiB₂. Atomic/friction force microscopy and first-principles calculations have been employed to study the self-lubrication microscopic mechanism of TiB₂/Al composite. Atomic force microscopy confirms the existence of a soft film with nanometer thickness on the TiB₂ surface, which was attributed to H₃BO₃ film. Friction measurements revealed much smaller friction force on this H₃BO₃ nanofilm than that on Al matrix. The detailed structure and interactions among H₃BO₃ molecules and between the H₃BO₃ sheet and substrate were explored by density functional theory based calculations. The details of adsorption of H₃BO₃ sheet on TiB₂ and TiO₂ surface were scrutinized

and the potential of the relative movement between H_3BO_3 sheets were scanned and compared with that of graphite. The generation of H_3BO_3 film, the strong chemical adsorption of H_3BO_3 film on the surface of the composite, the strong hydrogen bonding in H_3BO_3 film, and small potential in the relative slide between H_3BO_3 sheets warrant the good self-lubricant properties of TiB₂/Al metal matrix composites.

KEYWORDS: TiB_2/Al composite, self-lubrication microscopic mechanism, friction measurements, H_3BO_3 sheets, hydrogen bond, first-principles calculations

INTRODUCTION

TiB₂/Al, low cost metal matrix composites (MMC), have significant strain rate sensitivity at high strain rates, and exhibit high flow stress¹ and good wear resistance.²⁻⁴ The TiB₂/Al MMC has strong interfacial bonding between Al matrix and TiB₂ particles, thus showing high stability.⁵⁻⁷ So far, most TiB₂/Al MMCs were fabricated using in situ method.⁸⁻¹³ However, during the process of in situ fabrication, due to the difficulty in controlling particle size and reaction speed as well as generation of some brittle compounds at the interface (such as Al_3Ti), the properties of the TiB_2/Al composite could be significantly affected.¹⁴ To avoid the negative effect, TiB₂/Al MMC was fabricated by squeeze casting technology (SCT).^{15,16} TiB₂/Al MMC fabricated with SCT exhibits high wear resistance and no obvious adhesion or abrasion wear was observed on worn surfaces of TiB2/Al composites.16 Most importantly, friction coefficient of TiB_2/Al MMC is very low in a wide range of volume ratio of TiB2 and Al.^{16,17} The low friction coefficient was ascribed to the formation of H₃BO₃ on the surface of MMC due to the generation of B2O3 from TiB₂.^{4,16–19}

Until now, few works have been carried out in the field of micro tribology of boric acid, although investigations on the macro tribological behaviors of boric acid have been reported.²⁰

Atomic force microscopy(AFM) based studies²¹ found that under nanoscale contact, the boric acid film with deformed surface after the sliding of AFM tips shows low friction. This was ascribed to the reorientation of the boric acid sheets upon the deformation by the AFM tip.²² However, the micromechanism for the lubrication of TiB₂/Al MMC including the interface structure between TiB₂/Al and H₃BO₃ and the lubrication mechanism of H₃BO₃ on the MMC surface is not yet clear. Such micromechanism studies may help to optimize the design of new self-lubricant composite materials.

In the present work, the microstructure of TiB₂/2024Al MMC and the mechanism of self-lubrication of the materials are investigated with atomic/friction force microscopy (AFM/ FFM) and first-principles based calculations. During the wear process of TiB₂/2024Al MMC, the Al matrix supports the TiB₂ particles and wears away from the surface of the composites due to its relatively lower hardness. The TiB₂ left on the MMC surface is oxidized to TiO₂ and B₂O₃ followed by the formation of H₃BO₃ with H₂O on the surface of the composites.^{5,16} Two different interfaces could form after the formation of H₃BO₃.

 Received:
 January 22, 2015

 Accepted:
 May 26, 2015

 Published:
 May 26, 2015

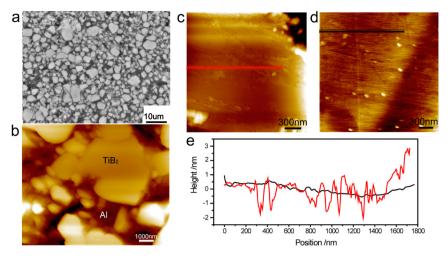


Figure 1. (a) Large-scale SEM image of $TiB_2/2024AI$ MMC. (b) Large-scale AFM height image (contact mode) of the polished $TiB_2/2024AI$ MMC surface. TiB_2 particles are distributed in the AI matrix homogeneously. Panels c and d are the height images obtain on the TiB_2 particle surface with tapping and contact mode, respectively. Cross section profile (e) clearly shows the difference in surface roughness.

One is H_3BO_3/TiB_2 and the other one is H_3BO_3/TiO_2 . Whether H_3BO_3 could adsorb on the surface is crucial to the self-lubrication of the material. In this work we first confirm the existence of a soft lubricate layer on the TiB_2 particle surface by AFM characterization, and the lateral friction measurements indicate the friction force is reduced for about 24.5 times on the TiB_2 particle surface in comparison with that on Al matrix. Then the structure of H_3BO_3 adsorbed surfaces is studied with first-principles calculations and the microscopic mechanism of the self-lubrication is revealed in detail.

EXPERIMENTAL AND COMPUTATIONAL DETAILS

Sample Preparation and Characterization. The TiB₂/2024Al MMC (55 vol % of TiB₂) was prepared by pressure infiltration method. The average size of TiB_2 is 1.6 μ m. The preheating temperature of preform is between 600-610 °C with the heating rate of 10 °C/s under the atmospheric environment and retained at the high temperature stage for 1h. At 770 °C, the molten 2024Al is extruded into the preform under a pressure of 70 MPa. Figure 1a shows the microscopic SEM image of TiB₂/2024Al MMC, from which it can be seen that the TiB2 particles are evenly distributed. The composition of the samples were analyzed by transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS), which were conducted on a JEOL200CX transmission electron microscope and PHI5700 ESCA system X-ray photoelectron spectroscopy, respectively. Both TEM and XPS characterizations confirmed the oxidation of TiB_2 and formation of TiO_2 and B_2O_3 on the sample surface (Supporting Information Figures S1 and S2).

AFM/FFM measurements were performed with an Agilent 5100 Scanning Probe Microscopy, operating with tapping mode and friction mode. The AFM probe used for tapping mode measurements is Tap300Al-G from Budget sensors, a silicon AFM probe coated with aluminum, and the resonant frequency is 300 kHz. For friction measurements a ContAl-G probe with aluminum reflection coating (resonant frequency = 13 kHz, force constant = 0.2 N/m) was used.

Models and Computational Details. Small H_3BO_3 clusters up to 13 H_3BO_3 molecules are constructed to study the strength of hydrogen bonds in the H_3BO_3 sheet. Density functional theory based first-principles methods $B3LYP^{23,24}$ with $6-31G(d, p)^{25,26}$ basis were employed for this characterization. The Gaussian 03 program²⁷ was used for those calculations. Two models, H_3BO_3/TiB_2 and H_3BO_3/TiO_{22} are designed for the interface between H_3BO_3 and the TiB_2/AI MMC. The (110) surface is chosen as the model for both TiB_2 and TiO_{22} .

The surface adsorption simulations are performed with VASP package with projector augmented wave (PAW) pesudopotentials.^{28,29} The exchange-correlation functional utilized was at the generalized gradient approximation level, known as GGA-PBE.³⁰ A plane-wave basis set with a cutoff energy of 400 eV was used for electron wave function. A Monkhost–Pack mesh of $3 \times 3 \times 1$ k-points was used for sampling the Brillouin zone during ionic relaxation, which is large enough for the current simulation. Optimization of structures was converged until the force on each atom is less than 1×10^{-2} eV.nm⁻¹, and energies were converged to 1×10^{-5} eV. In this work, 19.37 Å \times 20.96 Å \times 23.03 Å is chosen for the supercell of TiB₂ cell and 20.71 Å \times 25.99 Å \times 23.25 Å is chosen for that of TiO₂₁ the large vacuum space used in the supercells can avoid the interaction between the surface cells and their images along the z-axes. Three layers of TiO₂ and TiB₂ containing 210 and 216 atoms are used to mimic the surface of $TiO_2(110)$ and $TiB_2(110)$, respectively, while H_3BO_3 cluster adsorbed onto surface is composed of 12 H₃BO₃ molecules.

RESULTS AND DISCUSSION

Microstructure and Friction Measurements. Scanning probe microscopy (including STM, AFM, FFM, etc.) provides very powerful tool for the characterization of surface structures and physical/chemical properties on the nanoscale.^{31–33} In this work AFM, both tapping and contact mode, in combination with FFM was used to characterize the surface structure and probe the mechanism of lubrication. Large scale SEM and AFM height image reveals that the TiB₂ particles are distributed homogeneously in the Al matrix. The TiB₂ particles exhibit larger height in comparison with the Al matrix, and the top surface is flat because of polishing. Scratches are observed on the particle surface, appearing as depressions in height image obtained with contact mode. However, on the height image obtained with tapping mode, no scratches appear, instead, the surface is covered by a film with nanometer thickness (Figure 1). The roughness measured from the tapping mode image is apparently larger than that obtained from contact mode as shown in the section profile of both images (Figure 1d). These evidence indicate that there exists a soft film on the particle surface, which can be removed by tip scratching when operated with contact mode. This hypothesis is also supported by the phase image (Supporting Information Figure S3), which reveals quite different contrast on the TiB2 particle surface in comparison with the Al matrix. This soft film is attributed to H₃BO₃, which was formed during the preheating and friction

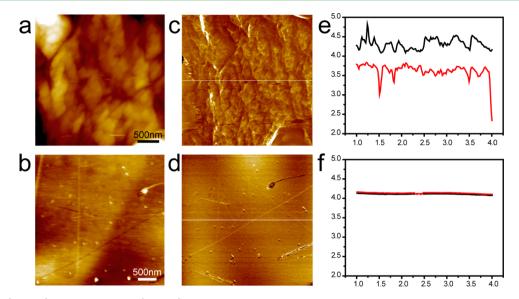
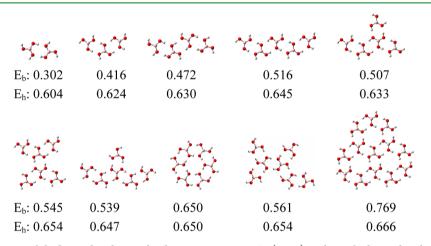
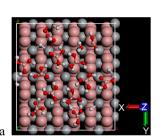



Figure 2. Height (a and b) and friction image (c and d) obtained on the Al matrix and TiB_2 particle surface. The cross section profiles of the trace and retrace channel (e and f) show clearly the difference in lateral friction forces on these different materials.

Figure 3. H_3BO_3 cluster sheets with hydrogen bonds. E_b is binding energy per H_3BO_3 (in eV), and E_h is hydrogen bond energy per H-bond pair (in eV).

process. The oxidation was confirmed by the TEM and XPS analysis (Supporting Information Figure S1 and S2).


The lateral friction forces on both TiB₂ and Al matrix using friction force microscopy are shown in Figure 2. Friction measurement on the TiB₂ particle surface and Al matrix, respectively, with the same tip and operation parameters, were performed, and cross section profile from the trace and retrace of friction channel were obtained (Figure 2). The gap between the trace and retrace profile allows to compare the friction forces qualitatively. The friction force in the same image was not measured and compared for the two components due to the big difference in height of both components, and the surface morphology can strongly convolute into the friction force. The friction force on the TiB₂ particle surface is reduced about 24.5 times with respect to that on Al matrix. The AFM measurements confirmed the existence of a soft film of H₃BO₃ with nanometer thickness.³⁴ The reduction of friction forces is attributed to the lubrication properties of the H₃BO₃ film on the TiB₂ particle surface.

First-Principles Calculations. The structure of H_3BO_3 cluster sheets and strength of interaction among H_3BO_3 molecules in the H_3BO_3 cluster sheets are investigated first. H_3BO_3 has C_3 symmetry and a H_3BO_3 molecule can form three pairs of hydrogen bonds with its surrouding H₃BO₃ molecules. The OH bond distance is 0.96 Å in a H₃BO₃ and it lengthens to about 0.98 Å upon forming hydrogen bond with other H₃BO₃. Figure 3 shows the interactions among H₃BO₃ molecules in H₃BO₃ cluster sheet from two to 13 H₃BO₃ molecules. As shown in Figure 3, binding energy $(E_{\rm b})$ and hydrogen bond energy $(E_{\rm h})$ are calculated to estimate the strength of H₃BO₃ nanosheet. $E_{\rm b}$ is the binding energy per H₃BO₃ molecule ($E_{\rm b}$ = $E_{\rm tot}/n$, $E_{\rm tot}$ is the total binding energy of the system, and *n* is the number of H_3BO_3), and E_h is hydrogen bond energy per pair of hydrogen bonds ($E_{\rm h} = E_{\rm tot}/n_{\rm pair}$, $n_{\rm pair}$ is the number of hydrogen bond pairs, for example, a H_3BO_3 dimer has one hydrogen bond pair). As the size of H_3BO_3 nanosheet increases, $E_h =$ $2E_{\rm b}/3$. As can be seen from $E_{\rm b}$ valuess and $E_{\rm h}$ values in Figure 3, $E_{\rm h}$ does not change much with the size of H₃BO₃ sheet and $E_{\rm h}$ may converge to a value around 0.700 eV, and following this estimation $E_{\rm b}$ could reach about 1.000 eV. The strong hydrogen bonding in H₃BO₃ mesh ensure the stress and strain resistance of the film.

The adsorption of single H_3BO_3 layer (with 12 H_3BO_3 molecules) on the (110) TiB₂ surface is shown in Figure 4a.

ACS Applied Materials & Interfaces

Research Article

top view

top view (TiB_2 removed)

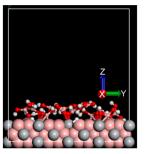

side view

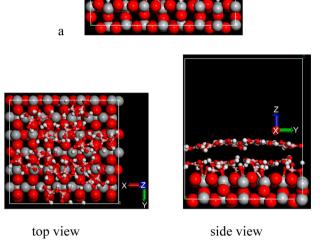
Figure 4. Adsorption of single layer (a) and double layer (b) $\rm H_{3}BO_{3}$ on (110) $\rm TiB_{2}$ surface.

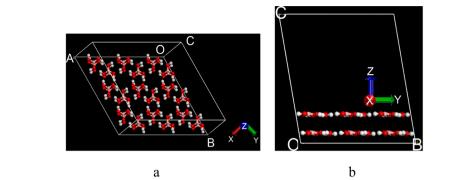
The mesh shape of the H_3BO_3 sheet on TiB_2 surface remains and conspicous deformation of the H_3BO_3 sheet occurs. Such deformation comes from the chemical bonding between the H_3BO_3 sheet and the TiB_2 surface. The $B(TiB_2)-B(H_3BO_3)$ distance ranges from 1.85 to 3.10 Å and the $Ti(TiB_2)-B(H_3BO_3)$ distance ranges from 2.20 to 2.80 Å. The binding energy between the H_3BO_3 sheet and the TiB_2 surface is -53.100 eV, that is, -4.425 eV per H_3BO_3 molecule. This strong adsorption warranties the good wear properties of H_3BO_3 during sliding of the intersurfaces.

The adsorption of double layers of H_3BO_3 on the (110) TiB₂ surface is shown in Figure 4b. The upper layer H_3BO_3 does not affect the adsorption of the lower layer H_3BO_3 on TiB₂. The average distance between those two H_3BO_3 layers is 3.66 Å and the average distance between the lower layer H_3BO_3 and TiB₂ is 2.55 Å. The average hydrogen bond distance in both layers of H_3BO_3 is 1.68 Å. The interaction energy between the upper layer and the rest of the system is -0.69 eV. Such weak attraction and van der Waals type distance (3.66 Å) ensure the smooth sliding of the upper layer H_3BO_3 with respect the surface.

Figure 5a shows the adsorption of single H_3BO_3 layer (with 12 H_3BO_3 molecules) on (110) TiO₂ surface, and conspicuous doformation of the H_3BO_3 sheet from plane occurs. The distance from $B(H_3BO_3)$ to $O(TiO_2)$ ranges from 1.49 to 3.32 Å and the distance from Ti(TiO₂) to $B(H_3BO_3)$ ranges from 2.59 to 3.50 Å. The average distance from H_3BO_3 sheet to TiO2 surface is 2.05 Å. Such strong deformation comes from the strong chemical adsorption of H_3BO_3 on TiO₂ surface, and possibly the limited size of the model which cause some edge effect, that is, the edge of H_3BO_3 sheet has strong interaction with the TiO₂ surface. Both effects reveal the strong interaction of H_3BO_3 with TiO₂. The adsorption energy of this H_3BO_3 layer onTiO₂ is -70.4 eV, which obviously manifest the nature of strong chemical adsorption. Eventhough, the strong

side view




Figure 5. Adsorption of single layer (a) and double layer (b) $\rm H_{3}BO_{3}$ on (110) TiO_2 surface.

hydrogen bonds (with average hydrogen bond distance of 1.91 Å) in the H_3BO_3 sheet tightly bind the H_3BO_3 molecules.

The adsorption of the second layer H_3BO_3 on H_3BO_3/TiO_2 elongates the average distance between the singly adsorbed H_3BO_3 layer and TiO₂ from 2.05 to 2.76 Å. However, the strong bonding nature of the first (lower) H_3BO_3 layer with TiO₂ remains as shown in Figure Sb, and the network of the lower H_3BO_3 layer is enhanced by the adsorption of the upper H_3BO_3 layer with average hydrogen bond distance of 1.76 Å. The average hydrogen bond distance of the upper H_3BO_3 layer is 1.75 Å. The distance between the two H_3BO_3 layers is 3.41 Å, slightly shorter than that when adsorbed on TiB₂ (3.66 Å). The adsorption enengy of the upper H_3BO_3 layer is -0.49 eV and this weak attraction facilitates the sliding among H_3BO_3 layers.

The potential energy during the relative sliding of two H_3BO_3 sheets is investigated as shown in Figure 6. The equilibrium distance between two H_3BO_3 sheets is located to be 3.70 Å. The stress imposed on the H_3BO_3 sheet during sliding will push the two H_3BO_3 sheets closer than the equilibrium distance. For the simulation of relative sliding of H_3BO_3 sheets, the distance between the two H_3BO_3 sheets is 3.05 Å. The energy barrier from the energy minimum to energy maximum of sliding in one direction (oa) is 0.14 eV. The other direction needs higher energy (0.37 eV) to overcome the potential energy barrier.

Graphite is a well-know solid lubricant. The potential energy is investigated in the present work for comparison with that of H_3BO_3 layers. The equilibrium distance between two grapheme sheets is 4.25 Å at the same level of theory. To simulate the raltive sliding of two graphene sheets under some stress, the distance between two graphene sheets is taken as 3.40 Å. The potential energy of relative sliding along one direction (oa) is 0.34 eV and it is about 0.82 eV along the other direction as shown in Figure 7. Both potential energies are larger than the corresponding values of H_3BO_3 sheets. A conservative

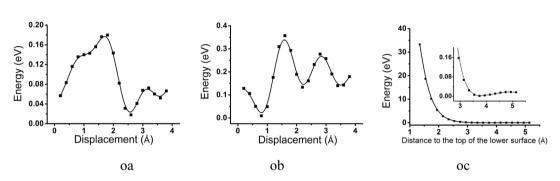


Figure 6. Potential energy of relative movement between two H3BO3 layers. oa, ob, and oc are the three directions as shown in a and b.

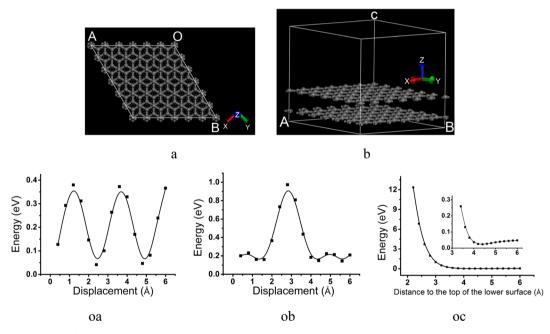


Figure 7. Potential energy of relative movement between two graphene layers. oa, ob, and oc are the three directions as shown in a and b.

observation about the relative sliding of H_3BO_3 sheets is that the friction of H_3BO_3 sheet is comparable to that of graphite (or graphene sheets), that is, H_3BO_3 nanosheets have good lubrication.

In summary, the oxidization of TiB_2 on the surface of $\text{TiB}_2/$ Al MMC forming H₃BO₃ leads to the formation of graphite like network of H₃BO₃. The strong hydrogen bonds in the H₃BO₃ sheet make this network strong enough to be wear resistant, while the small potential energy along the relative movement between H₃BO₃ sheets warrants the good lubrication of the H₃BO₃ film on the TiB₂/Al surface. Self-supply of H₃BO₃ through tribo-chemical reactions ensure the self-lubrication cycle.

CONCLUSION

The microstructure and lubrication mechanism of $TiB_2/2024AI$ MMC surface have been studied with both AFM/FFM and first-principles calculations. AFM characterizations confirmed the existence of a soft nanometer film on the surface of TiB_2 particles, and FFM reveals significant reduction of lateral friction forces on the TiB_2 surface (24.5 times smaller in comparison with Al matrix). The strength of H_3BO_3 network and adsorption of H_3BO_3 sheets on the surfaces of TiO_2 and

ACS Applied Materials & Interfaces

 TiB_2 have been investigated in detail with first-principles calculations. H_3BO_3 can be stably adsorbed on TiB_2 and TiO_2 surfaces through chemical bond between the first layer of H_3BO_3 film and those surfaces, ensuring the stability of the film. The strong hydrogen bonds among H_3BO_3 render the formation of graphene like network, and this warrants the wear resistance of H_3BO_3 . The relative weak interaction between H_3BO_3 layers is responsible for the good self-lubricant properties of this material on TiB_2 or TiO_2 .

ASSOCIATED CONTENT

Supporting Information

Height and phase image and TEM and XPS of the $\rm TiB_2/Al$ composite. The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/ acsami.Sb02906.

AUTHOR INFORMATION

Corresponding Authors

*E-mail: leisb@hit.edu.cn

*E-mail: tianwq@hit.edu.cn.

*E-mail: wugh@hit.edu.cn.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The work is supported by National Key Laboratory of Materials Behaviors & Evaluation Technology in Space Environments(HIT), the National Science Foundation of China (21303030, 21173061, 21373070), the State Key Lab of Urban Water Resource and Environment (HIT) (2014TS01) and the Open Project of State Key laboratory of Supramolecular Structure and Materials (JLU) (SKLSSM2015018), the Open Project of State Key Laboratory of Robotics and System (HIT) (SKLRS-2015-MS-11).

REFERENCES

(1) Zhu, D. Z.; Wu, G. H.; Chen, G. Q.; Zhang, Q. Dynamic Deformation Behavior of a High Reinforcement Content TiB₂/Al Composite at High Strain Rates. *Mater. Sci. Eng., A* **2008**, 487, 536–540.

(2) Natarajan, S.; Narayanasamy, R.; Kumaresh Babu, S. P.; Dinesh, G.; Anil Kumar, B.; Sivaprasad, K. Sliding Wear Behaviour of Al 6063/ TiB₂ in situ Composites at Elevated Temperatures. *Mater. Design* **2009**, *30*, 2521–2531.

(3) Smith, A. V.; Chung, D. D. L. Titanium Diboride Particle-Reinforced Aluminium with High Wear Resistance. *J. Mater. Sci.* **1996**, *31*, 5961–5973.

(4) Sreenivasan, A.; Vizhian, S. P.; Shivakumar, N. D.; Muniraju, M.; Raguraman, M. A Study of Microstructure and Wear Behaviour of TiB₂/Al Metal Matrix Composites. *Lat. Am. J. Solids Struct.* **2011**, *8*, 1–8.

(5) Caracostas, C. A.; Chiou, W. A.; Fine, M. E.; Cheng, H. S. Tribological Properties of Aluminum Alloy Matrix TiB_2 Composite Prepared by In-Situ Processing. *Metall. Mater. Trans. A* **1997**, 28A, 491–502.

(6) Suresh, S.; Moorthi, N.; Shenbaga, V.; Selvakumar, N.; Vettivel, S. C. Tribological, Tensile and Hardness Behavior of TiB₂ Reinforced Aluminum Metal Matrix Composite. *J. Balk. Tribol. Assoc.* **2014**, *20*, 380–394.

(7) Mitra, R.; Chiou, W. A.; Fine, M. E.; Weertman, J. R. Interfaces in as-extruded XD Al/TiC and Al/TiB₂ Metal Matrix Composites. *J. Mater. Res.* **1993**, *8*, 2380–2392.

(8) Sadeghian, Z.; Enayati, M. H.; Beiss, P. In-Situ Production of Al-TiB₂ Nanocomposite by Double-Step Mechanical Alloying. *J. Mater. Sci.* **2009**, *44*, 2566–2572.

(9) Katakam, S.; Asiamah, N.; Santhanakrishnan, S.; Dahotre, N. Laser In-Situ Synthesis of TiB₂–Al Composite Coating for Improved Wear Performance. *Surf. Coat. Technol.* **2013**, 236, 200–206.

(10) Gotman, I.; Koczak, M. J.; Shtessel, E. Fabrication of Al Matrix In-situ Composites via Self-Propagating Synthesis. *Mater. Sci. Eng. A* **1994**, *187*, 189–199.

(11) Brinkman, H. J.; Duszczyk, J.; Katgerman, L. In-Situ Formation of TiB_2 in a Aluminum Matrix. *Scr. Mater.* **1997**, *37*, 293–297.

(12) Feng, C. F.; Froyen, L. Microstructures of In Situ Al/TiB_2 MMCs Prepared by a Casting Route. J. Mater. Sci. 2000, 35, 837–850.

(13) Tayeh, T.; Douin, J.; Jouannigot, S.; Zakhour, M.; Nakhl, M.; Silvain, J.; Bobet, J. Hardness and Young's Modulus Behavior of Al Composites Reinforced by Nanometric TiB₂ Elaborated by Mechanosynthesis. *Mater. Sci. Eng. A* **2014**, *591*, 1–8.

(14) Tee, K. L.; Lu, L.; Lai, M. O. Improvement in Mechanical Properties of In-Situ Al– Ti_{B2} Composite by Incorporation of Carbon. *Mater. Sci. Eng. A* **2003**, 339, 227–231.

(15) Zhao, M.; Wu, G. H.; Dou, Z. Y.; Jiang, L. T. TiB_{2p}/Al Composite Fabricated by Squeeze Casting Technology. *Mater. Sci. Eng. A* **2004**, 374, 303–306.

(16) Zhao, M.; Wu, G. H.; Jiang, L. T.; Dou, Z. Y. Friction and Wear Properties of TiB_{2p}/Al Composite. *Compos. Part A* **2006**, 37, 1916–1921.

(17) Zhao, M.; Wu, G. H.; Dou, Z. Y.; Jiang, L. T. Property Characteristics of a TiB_{2P}/Al Composite Fabricated by Squeeze Casting Technology. J. Mater. Sci. Technol. 2006, 22, 83–86.

(18) Dvorak, D.; Wahl, K. J.; Singer, I. L. Friction Behavior of Boric Acid and Annealed Boron Carbide Coatings Studied by In Situ Raman Tribometry. *Tribol. Trans.* **2002**, *45*, 354–362.

(19) Tian, S. F.; Jiang, L. T.; Guo, Q.; Wu, G. H. Effect of Surface Roughness on Tribological Properties of TiB₂/Al Composites. *Mater. Design* **2014**, *53*, 129–136.

(20) Erdemir, A. Tribological Properties of Boric-Acid and Boric-Acid-Forming Surfaces 0.1. Crystal-Chemistry and Mechanism of Self-Lubrication of Boric-Acid. *Lubr. Eng.* **1991**, 47, 168–173.

(21) Ma, X. D. Nanotribological Properties of Boric Acid-Boron Oxide system. *Mater. Mech. Eng.* 2000, 24, 11–19.

(22) Ma, X. D. Nanoscale Tribological Properties of Boric Acid. *Lubr. Eng.* **1999**, *3*, 29–39.

(23) Becke, A. D. Density-Functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. **1993**, 98, 5648-5652.

(24) Lee, C.; Yang, W.; Parr, R. G. Development of the Colle–Salvetti Correlation-Energy Formula into a Functional of the Electron Density. *Phys. Rev. B* **1988**, *37*, 785–789.

(25) Petersson, G. A.; Bennett, A.; Tensfeldt, T. G.; AI-Laham, M. A.; Shirley, W. A.; Mantzaris, J. A Complete Basis Set Model Chemistry. I. The Total Energies of Closed-Shell Atoms and Hydrides of the First-Row Elements. *J. Chem. Phys.* **1998**, *89*, 2193–2218.

(26) Hariharan, P. C.; Pople, J. A. The Influence of Polarization Functions on Molecular Orbital Hydrogenation Energies. *Theor. Chim. Acta* **1973**, *28*, 213–222.

(27) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.;

ACS Applied Materials & Interfaces

Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. *Gaussian 03*, revision B.03; Gaussian, Inc.: Wallingford, CT, 2004.

(28) Blöchl, P. E. Projector Augmented-Wave Method. *Phys. Rev. B* **1994**, *50*, 17953–17979.

(29) Kresse, G.; Joubert, J. From Ultrasoft Pseudopotentials to the Projector Augmented Wave Method. *Phys. Rev. B* **1999**, *59*, 1758–1775.

(30) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. *Phys. Rev. Lett.* **1996**, 77, 3865–3868.

(31) Barth, C.; Foster, A. S.; Henry, C. R.; Shluger, A. L. Recent Trends in Surface Characterization and Chemistry with Highresolution Scanning Force Methods. *Adv. Mater.* **2011**, *23*, 477–501.

(32) Liscio, A.; Palermo, V.; Samorì, P. Nanoscale Quantitative Measurement of the Potential of Charged Nanostructures by Electrostatic and Kelvin Probe Force Microscopy: Unraveling Electronic Processes in Complex Materials. *Acc. Chem. Res.* **2010**, 43, 541–550.

(33) Riet, J.; Smit, T.; Gerritsen, J. W.; Cambi, A.; Elemans, J. A. A. W.; Figdor, C. G.; Speller, S. Molecular Friction as a Tool to Identify Functionalized Alkanethiols. *Langmuir* **2010**, *26*, 6357–6366.

(34) Erdemir, A.; Fenske, G. R.; Erck, R. A. A Study of the Formation and Self-lubrication Mechanisms of Boric Acid Films on Boric Oxide Coatings. *Surf. Coat. Technol.* **1990**, *43*–44, 588–596.